

HYDROGEN IN MARITIME REGULATORY UPDATES AND MARKET UPDATES

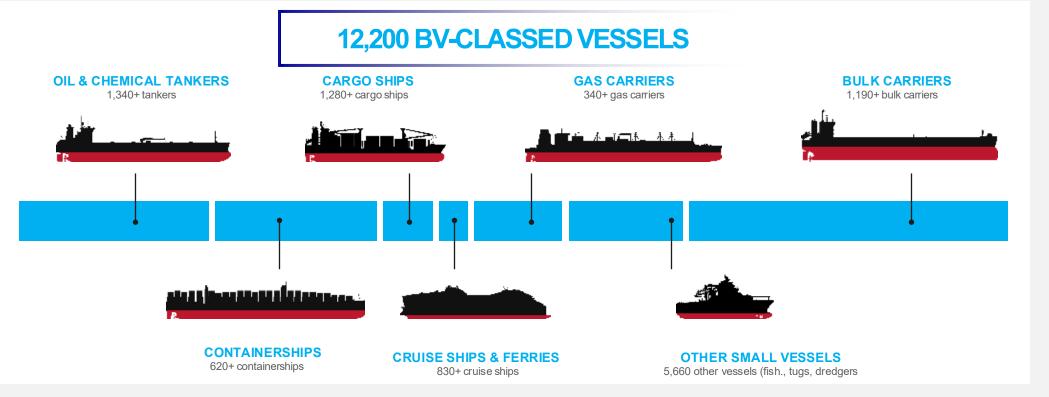
Julien Boulland
Sustainability strategy lead
Bureau Veritas Marine & Offshore

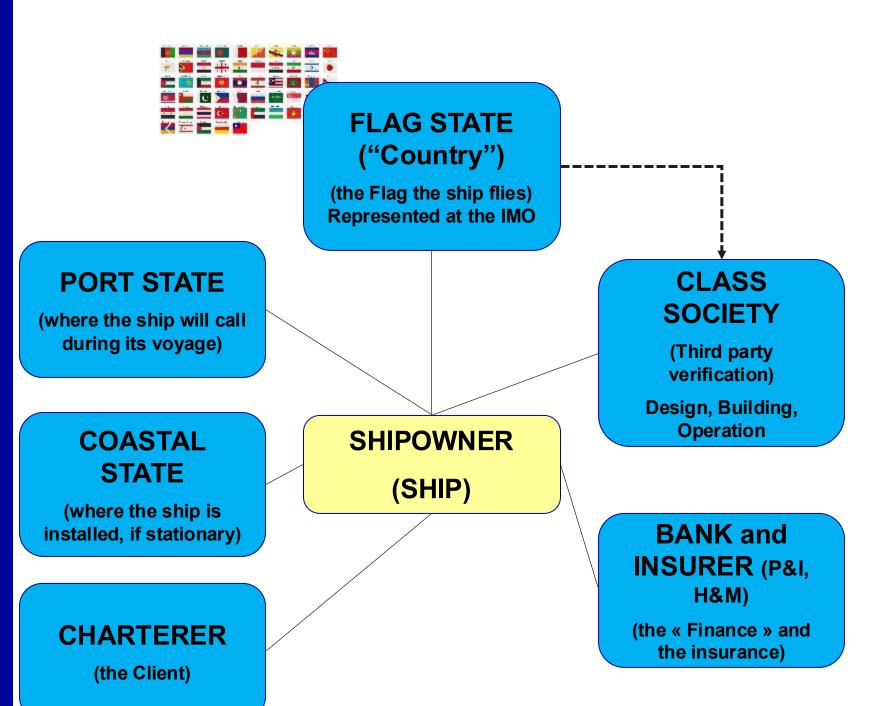
BUREAU VERITAS

Bureau Veritas

Services in Testing, Inspection and Certification

"Contributing to transform the world we live in"




Bureau Veritas Marine & Offshore

STAKEHOLDERS AND REGULATORY ENVIRONMENT

FLAG STATE

- Legal registration and nationality
- Regulatory responsibilities inc. ensuring compliance with maritime conventions on safety, environmental protection and crew-related ("IMO Conventions")
- Focus: regulatory compliance

IMO (International Maritime Organization)

- UN Agency dedicated to maritime transport
- Develops and maintains maritime regulations : safety, environment protection
- Constituted of 176 Member States ("Flag State").

CLASS SOCIETY

- Originally set up by Marine Insurers circa 1800's
- Giving "Rating" to a ship for marine insurance
- Independent, non-governmental organization developing and maintaining technical standards on design and construction of ships.
- Can act in Delegation of Flag States (as "Recognized Organization")

POTENTIAL TORSE AND ARRAST THE

(A) IRCLASS

Focus: technical safety

HYDROGEN AS FUEL HYDROGEN AS CARGO

FUEL CELL

HYDROGEN TECHNOLOGY REGULATIONS DEVELOPMENT AND MAIN SAFETY CONSIDERATIONS

UNDERSTAND HYDROGEN CHARACTERISTICS TO MITIGATE THE RISK BY DESIGN

- Eliminate potential ignition sources
- Ventilate as much as possible

CONSIDER HYDROGEN COMPATIBILITY AT THE DIFFERENT OPERATING CONDITION FOR MATERIAL SELECTION

Very low temperature and wide range of temperature are to be considered

ARRANGE PIPING IN A WAY THAT REDUCE LEAKAGE AND ALLOW FOR EASY DETECTION

Prefer butt-welded pipes

CONTROL AND MONITORING IS KEY

SPECIFIC SAFETY ASPECTS

- Compressed Hydrogen leakage at very high pressure
- Liquefied Hydrogen: Clogging, Oxygen stratification, boil-off management

HYDROGEN AS FUEL

IMO Interim Guidelines to be adopted in May 2026

Functional requirements, goals and principles (Ship design, construction and operation)

Detailed requirements related to Ship design, construction and operation

Functional requirements and goals related to training

Gas carriers and / or tankers using their cargo as fuel

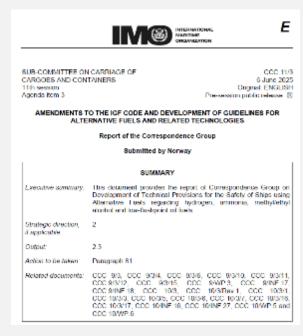
IGF Code Part A

- Detailed risk analysis
- Alternative design approach if no detailed requirements available in IGF Code

Guideline under development

Work initiated through Correspondence Group in 2022

Draft finalized at CCC11 (Sept 2025)


To be approved by MSC 111 in 2026 (May)

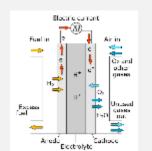
IGF Code Part D

Not addressed yet – IGC Code Ch 16 general principle

In Sept 2025, final discussions on:

- Dedicated provisions for fuel separation rooms and tank connection spaces
- Separate requirements for Liquid H₂ and compressed H₂ containment systems
- Specific requirements for type C tanks (Liquid H₂) and type 4 composite cylinders (Compressed H₂)
- Adapts existing IGF requirements to hydrogen

BV Rules published in 2023, revised in 2025


BV dedicated Rule note

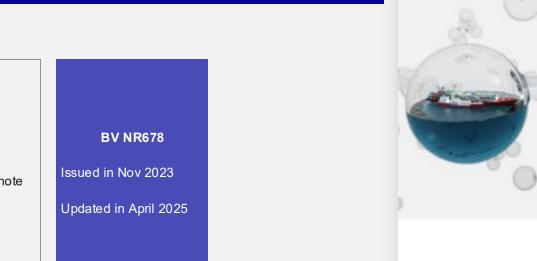
Application specificities to be specified in Rules for Yachts and Ships less than 500 GT

(NR500) and NR566)

Tanker using its cargo as fuel

Development status

Machinery:


Internal Combustion Engine and Fuel Cell

HYDROGEN-FUELLED

SHIPS

NR678 - APRIL 2025

- > Risk assessment
- > Arrangement onboard
- > Control of atmosphere
- Materials compatibility (embrittlement)
- > Bunkering Equipment
- > Fuel Containment System
- > Venting and Pressure Relief
- > Hydrogen Piping
- Fire Protection

HYDROGEN AS CARGO

IMO

Revised Interim Recommendations to be adopted in May 2026

Liquid Hydrogen

Ship Safety

SOLAS

IGC Code

+ MSC.565(108)

Part on membrane

finalized at CCC11

(2025)

Cargo Safety

Bunkering Safety

No specific framework : same requirements as for a cargo transfer operation

Draft **Amendments** Revised Interim Recommendations for Carriage of Liquefied Hydrogen in Bulk

for Adoption at IMO MSC 111 (May 2026)

- General requirements Part A:
- Part B: Independent cargo tanks using vacuum insulation
- Part C: Independent cargo tanks using insulation materials and hydrogen gas in inner insulation space
- New Part D: Membrane-type cargo tanks maintaining insulation spaces under vacuum respectfully

BV Rules published in 2023, revised in 2025

Liquid Hydrogen

Ship Safety

BV Rules Steel Ships

NR467 Pt B & C

Cargo Safety

BV Rules Steel Ships Gas Carriers

NR467 Pt D Ch 9 (July 2025) Based on IMO MSC.565(108)

Bunkering Safety especially Bunkering station & transfer system

To be developed

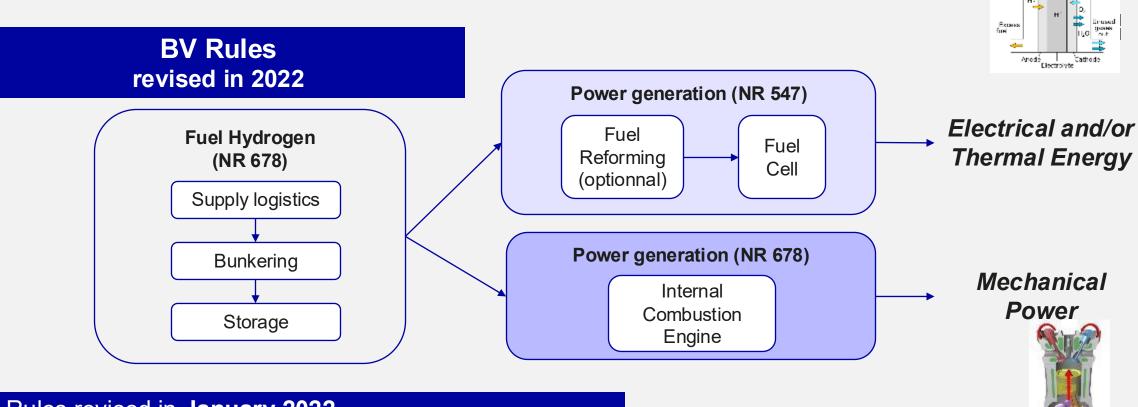
FUEL CELL

IMO Interim Guidelines published in 2022

Functional requirements, goals and principles (Ship design, construction and operation)

Detailed requirements related to Ship design, construction and operation

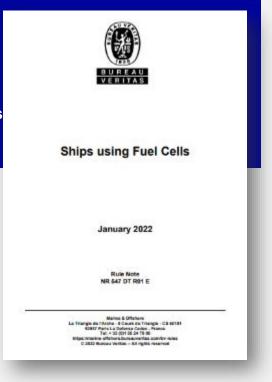
MSC.1/Circ.1647 Interim guidelines for the safety of ships using fuel cell power installations


Approved by MSC105 (04/2022)

Functional requirements and goals related to training

Gas carriers and/or tankers using their cargo as fuel

V/A


Will start review in Sept 2026

Rules revised in **January 2022**

- General
- > Safety assessment
- Materials
- → General arrangement
- > Fuel cell power installation
- Fire safety
- Electrical systems
- Control, monitoring and safety systems
- Onboard testing
- > Survey at works and certification

Message

Update planned Q1 2026

Develop ment status

Specificities for Yachts and Less than 500 GT

INLAND NAVIGATION: CESNI - ES-TRIN

ESTRIN

Functional requirements, goals and principles

Detailed requirements related to Ship design, construction and operation

BV Classification Rules Additional service feature

Rule reference

Hydrogen

Fuel Cells

ES-TRIN 2021

Chapter 30 and Annex 8 applicable to craft operating on fuels with a flashpoint equal to or lower than 55 °c

ES-TRIN 2027 Annex 8

Entry into Force January 2028

To be developed, may may be covered by **LFPfuel** as needed

Annex 8

Fuelcell

INLAND Rules

(NR217 Pt D, Ch 4)

Color Code

In force

Published

Finalized, not published

Not covered

RULES FOR THE CLASSIFICATION OF INLAND NAVIGATION VESSELS

NR217 - JUNE 2025

PART D
ADDITIONAL REQUIREMENTS FOR

SOME PROJECTS – FUEL CELL

Silver Nova, Royal Caribbean. LNG fuel. [4 MW fuel cell.]

Viking Neptune, Viking. 100 kW fuel cell.

MF Hydra, Norled. 2021 Liquid Hydrogen (4T, 56 m³). 2x200 kW PEM fuel cell.

Penguin, Demonstraor. VINSSEN 60kW FC. Compressed H₂

San Xia Qing Zhou 1 Hao (Three Gorges Hydrogen Boat 1) 500 kW Fuel cell.

Sea Change, 2023. 3 x 120 kW PEM fuel cell 242 kg, 250 bar.

Dredger "Hydromer", 2024 200 kW PEM fuel cell 500 bar, 2 T.

World Europa, SOFC 150 kW Demonstrator BloomEnergy

Zulu 06, PEM FC 2 x 200 kW., 280 kg Hydrogen, 300 bar, 14 m3

Alba, 2 x 70 kW PEM fuel cell, 2024 350 bar, 75 kg.

Project NAVHYS HORIZON EUROPE : 5 ME LH₂ below deck Ariane, BV, ...

FUEL CELL OEM AND BUREAU VERITAS

PROJECTS TRANSPORTATION LIQUID H₂

Limited experience in LH₂ transportation

- Currently, only **one vessel** ("SUISO FRONTIER") built by Kawasaki, Japan. **Delivered in 2021**. (not BV)
- Purpose: to test and prove transportation of bulk LH₂ by sea, this is a **pilot vessel**.
- Transport Liquid H₂ from Australia (Hastings) to Japan (Kobe). Hydrogen produced through gasification of brown coal with carbon capture and storage ("*blue*" H₂)
- LH₂ storage tank of **1,250m³** at -253°C, Type-C.
- I Double-shell vacuum-insulated. Inter space supported by high strength glass fiber reinforced plastic.
- The vessel uses Diesel-Electric propulsion
- Note: Incident in Australia earlier this year (Gas Combustion Unit)

BV Projects:

- Approval-in-Principle (AIP) for large 150,000 m3 Liquefied H₂ carrier
- I AIP for 75,000 m3 Liquefied H₂ floating barge
- I AIP for 18,000 m3 Liquefied H₂ carrier
- I AIP for 230 m3 Liquefied H₂ tank

Shaping a World of Trust

