

R&I on hydrogen as a powerful leverage to decarbonise shipping

Lionel BOILLOT, CleanH2 JU

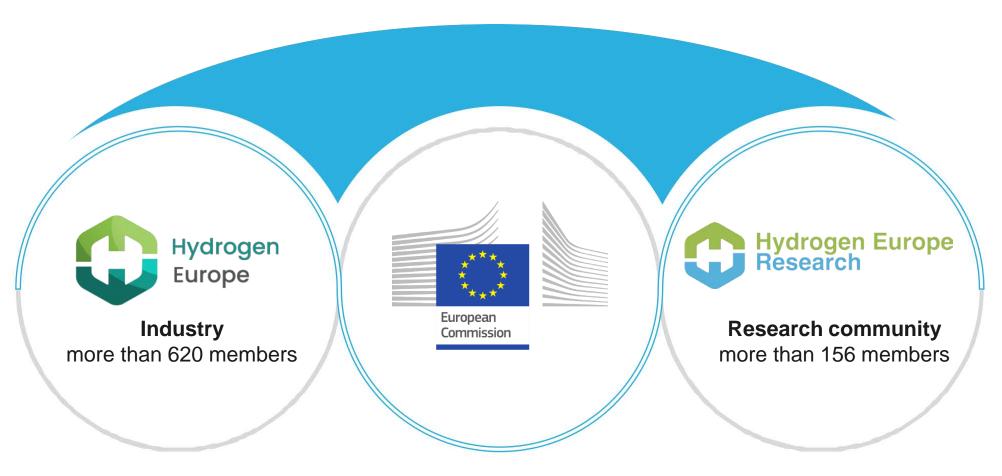
6 November 2025 - Paris (IEA)

Structure

Overview

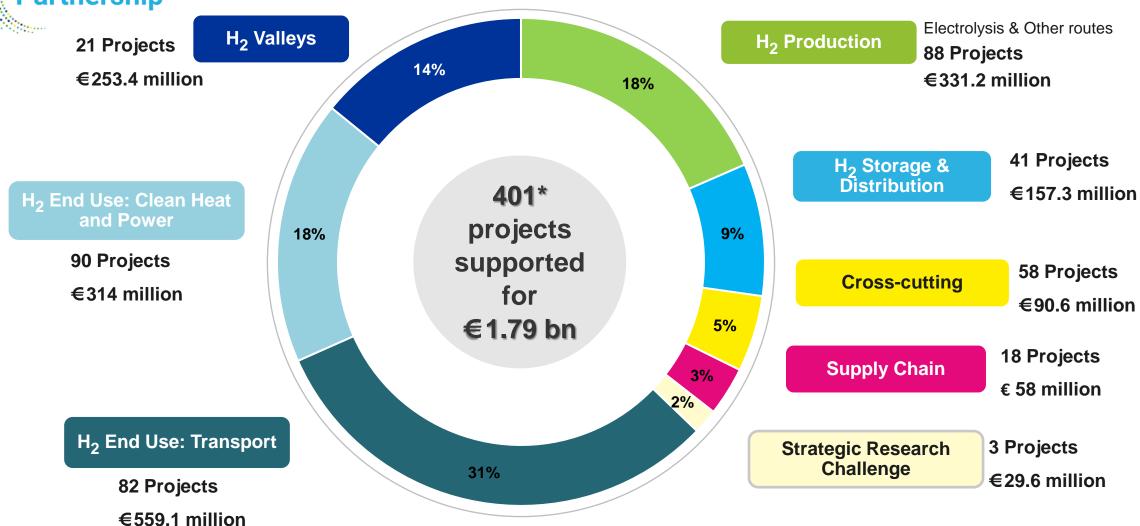
- Clean Hydrogen JU intro
- Overview JU supported projects – shipping and ports

Shipping

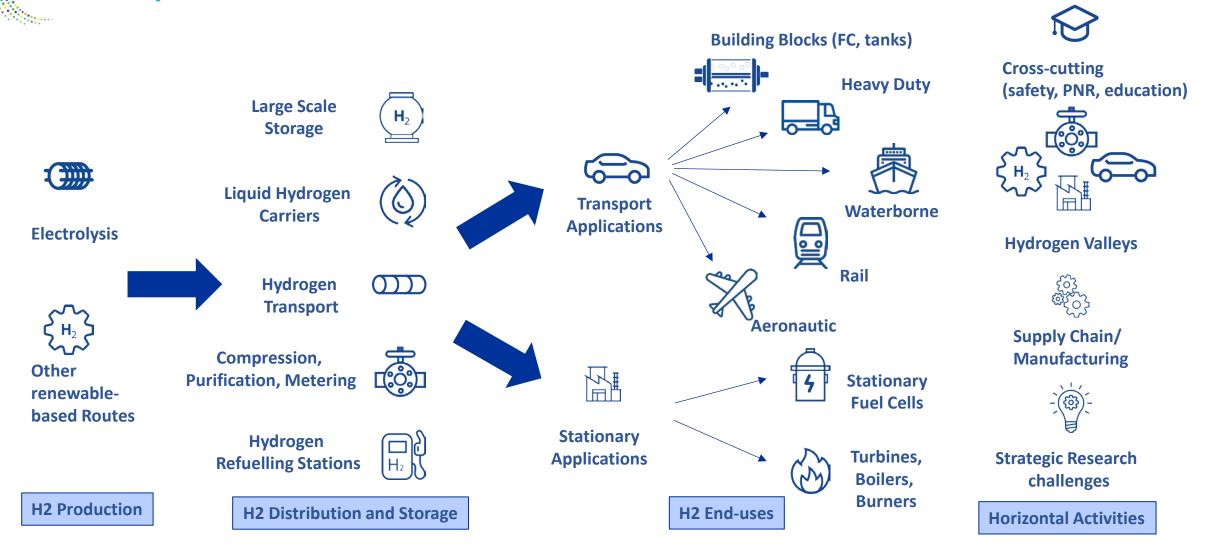

- Evolving context 2017 to 2025
- Fuel Cells projects and demonstrators
- Hydrogen distribution and storage
- Regulation
- Cooperation

Clean Hydrogen Joint Undertaking - Introduction

Institutionalised European Public-Private Partnership



1 billion EURO from Horizon Europe* to implement R&I activities and facilitate the transition to a greener EU society through the development of hydrogen technologies * additional 200 million EURO for Hydrogen valleys (under RePowerEU)

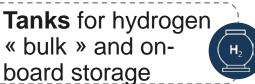


Clean Hydrogen JU Programme

Clean Hydrogen Strategic Research & Innovation Agenda (2021 - 2027) Partnership

Hydrogen solutions for shipping and ports

Clean Hydrogen Partnership



Multi-MW stacks and

fuel cells systems

Hydrogen **ports**

ecosystems

Regulations, codes and standards

+ New study

H MARINE

+ New

NICOLHy

Liquid hydrogen bunkering

Heavy machinery for container handling

+ New

Demonstration of short sea and fluvial vessels

HyShip

- H₂ price
- **SOFC** supply chains

Heat and on-shore power

for ferry terminals

Hydrogen in shipping: context evolution 2017 to 2025

- Regulations
- Cooperation
- R&I (incl. failures)

2025

2017-18

Concept & 1st Ships / Vessels demonstrator(s)

10+ sailing (≠ type and size), ~50 on order

Certified equipment (FC and H2 storage)

Sum PEM FC power inst.

Technical approach

IMO rules

Class societies guidance

Institutional, EU and global levels (IEA, EMSA, CEN/CENELEC, etc.), pioneering countries (JP, NO)

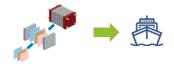
~ 200kW

~ 22 MW (i.e. x100)

~10 type-approved and ~20 AiP

Maritime specific

Interim guidelines for H2 and ammonia as fuel, FC and bulk H2 carriers


RINA, ABS, DNV, BV, LR, ClassNK, KR, CCS

Institutional, national and regional levels and market players

Stakeholders

Research on Fuel Cells for maritime and other HD applications

Maritime

Large PEMstack development

- 250+kW PEM stack for maritime
- 40.000h lifetime on-line diagnostic and prognostic
- Accelerated test procedure
- Resistant to maritime environment (titling, vibration, air filter, etc.)
- Scale-up to multi-MW FC system

MW PEMFC System development

New

Scale-up to multi-MW FC system

Targets PEM FCS for maritime

- FCS Power rating: 3MW for 2024, 10 MW for 2030
- FCS lifetime: 40.000 h for 2024, 80.000 h for 2030
- PEMFC system CAPEX: <1,500 EUR/kW for 2024,1,000 EUR/kW for 2030

Spill over from other HD applications

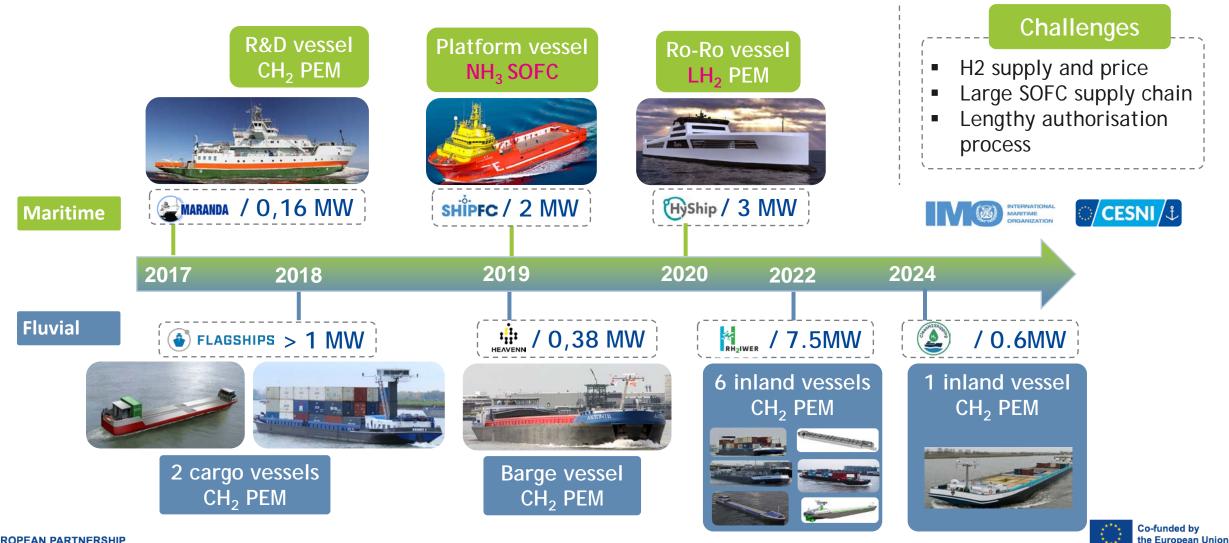
MEA/Stack performance

 Focus on charge, mass and heat transports phenomena

 Optimisation of stacks for High Power Range Application

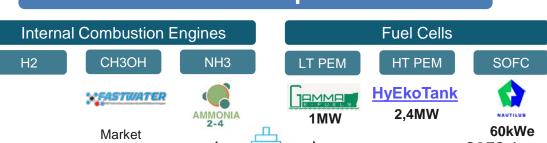
Focus on durability

- Development of durable and high-power density MEAs for HD, with reduced Pg loading
- Target = 20.000h at system level



Demonstrators: towards larger vessels

Building the pilots and experiments to speed up standards for waterborne applications



Synergies at EU level - Programmes and Projects

Alternative Fuels - powertrains

available

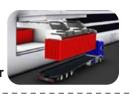
4-strocke APOLO 125kW

APOLLO.

SOFC+battery **HELENUS**

SHIP-AH2OY

500kW


1MW-LOHC

Alternative Fuels - storage

LH2 in container

Demonstrators with PEM FC

H2ydroShuttle

Short sea container MWs PEMFC on LH2 - SAMSKIP - 47M€ funding

EO2 Energy Observer 2

Cargo ship - MWs PEMFC on LH2 -AssetCo EO2 - 40M€ funding

Swap2Zero

Hybrid passenger cruise ship with wind, LH2, bio-LNG - ARVAG -40M€ funding

Bunkering liquid hydrogen and hydrogen derivative-fuels

LH2 distribution

Safety and efficiency of LH2 transfer technologies (tank to tank) in public areas for mobile applications (trucks, **ships**, stationary tanks)

DelHyVEHR

Delivery of Liquid Hydrogen for Various Environment at **High Rate** (including maritime)

LH2 tank storage

Novel large size LH2 on-board storage

LH2 on-board tank

- Below deck storage
- Materials, engineering, tests bench + in SOV
- LH2 bunkering operations (delivery, cryo-pumps, etc.)

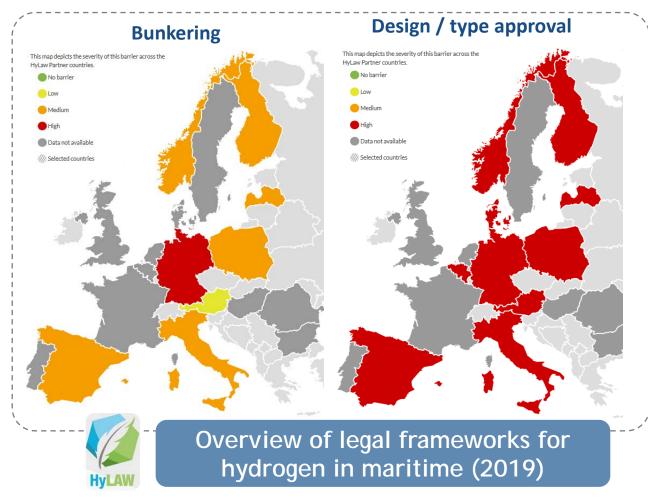
LH2 « bulk » storage

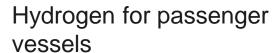
Large LH2 tanks for bulk vessels:

- Long-term storage and longdistance transport
- 180m3 ⇔ 10t LH2 demo
- Material research

Insulation concept for LH2

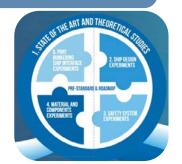
storage:


- Large on-ground tanks
 40.000 200.000 m³ LH2
- Spill over to maritime
- Material research



Regulations, codes and standards for hydrogen ships

Enable investments, financial institutions, shipbuilders, shipowners and charterers need comprehensive and predictable legal framework


Pre-Normative Research, codes and standards

Experimental data

es'H₄IPS

 Guidelines for safe design for the new IGF chapter on hydrogen

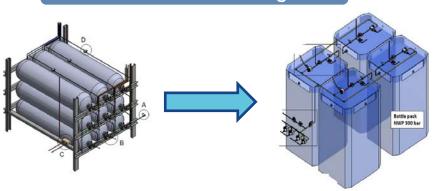
CEN/CENELEC SFEM WG Hydrogen

- Develop an appropriate PNR/standardisation roadmap/action plan to address PNR gaps in the maritime sector
- CEN Agreement Workshop in July 2024 with e-SHyIPS


Regulatory issues, example of H2 storage in MARANDA

Derive maritime solutions from the automotive applications

Marinisation approach



Conceptually simple:

- Quick, lower costs and risks
- Bring to maritime requirements
- "Only" maritime regulation compliance

Issues for H2 storage...

... and yes — researching the hard way!

Issue 1:

On-road transport of H2 requires equipment to be certified by the transportable pressure equipment directive (TPED)

<u>Destructive</u> tests of the <u>entire</u> storage <u>system</u>

Issue 2:

On-road transport of compressed H2 requires a ventilated container, with openings...

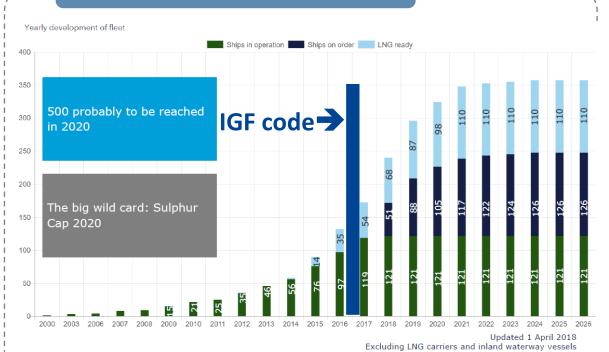
<u>But</u> maritime transport of H2 requires: gas tightness and fire safety

Issue 3:

Eventually new TPED storage system is available only on pre-order basis

<u>Delays</u>

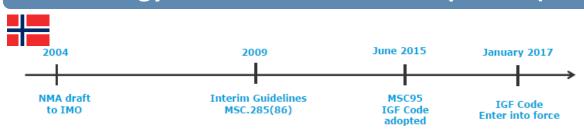
Issue 4: 300 bar bundles...


Not matching required ship autonomy

Why regulation matters? LNG learning

LNG as a blue print

Impact of IMO rules on market

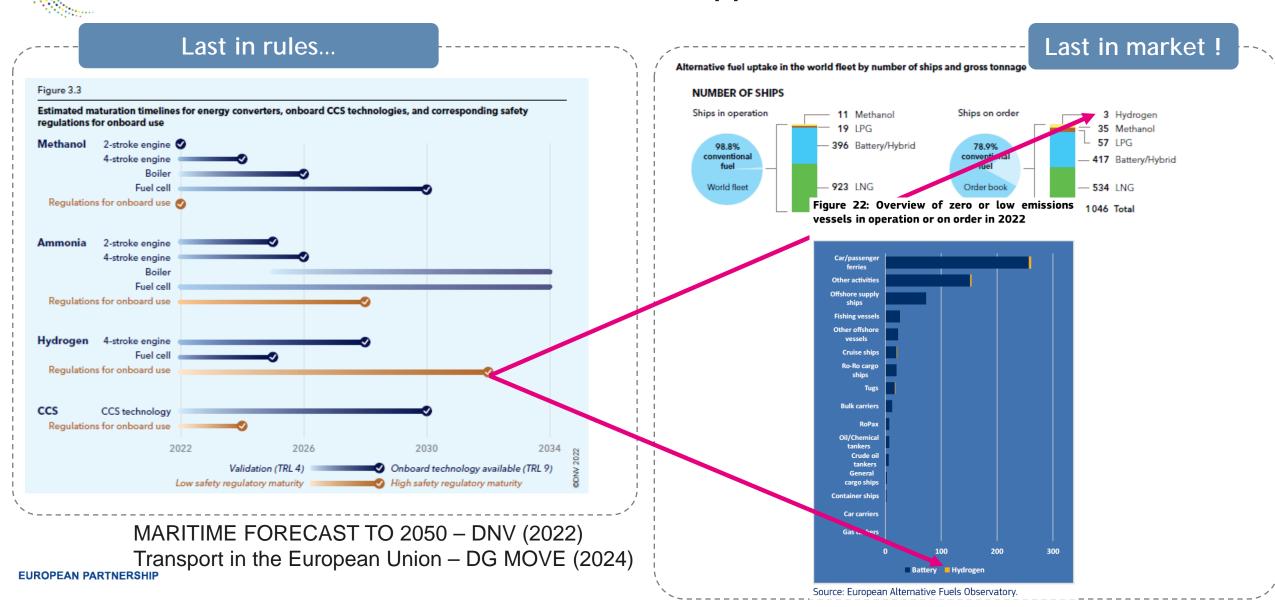


Explicit international rules are instrumental to the emergence of alternative fuels in maritime applications

H2 = Alternative design process, or...

Chronology for an IMO rule development (LNG)

■ The process to develop international codes and rules is particularly long and requires national sponsorship(s)


Status at IMO for H2 (2025)

- Interim guidelines for ships using fuel cells (MSC 2022)
- Interim safety guidelines for ships using ammonia cargo as fuel (CCC11 2025)
- Interim safety guidelines for hydrogen-fuelled ships (CCC11 2025)
- Amendments to the Interim Recommendations for carriage of liquefied hydrogen in bulk (CCC11 2025)

Explicit international rules are instrumental to the emergence of alternative fuels in maritime applications

Workshops, and Regulation, Codes and Standards (RCS)

European and international cooperation is key to foster introduction of H2 ships

IEA-HIA Task 39

Four subtasks:

- Technology Overview
- New Concepts
- Safety and Regulations
- Demonstration

RCS work and Cooperation

- JU RCS Group
- Projects with class societies as partners or AB
- Projects with specific tasks on RCS → IMO groups
- <u>Collaboration</u> with CEN/CENELEC, ESSF, HE WG maritime, AWP European standardisation, JRC

Workshops

Workshops FC and H₂ in maritime applications (June 2017, May 2018)

- Awareness raising on FC and H₂, technical State-of-the-Art
- Work needed on standards, protocols, permission framework for hydrogen handling in harbours or in boats

IMO - Sub-Committee on Carriage of Cargoes and Containers (CCC5 - 2018)

Hydrogen Power for ships EU co-funded research developments and identified issues

Hydrogen solutions for shipping and ports

Clean Hydrogen Partnership

H MARINE

+ New

Tanks for hydrogen « bulk » and onboard storage

Multi-MW stacks and

fuel cells systems

Liquid hydrogen bunkering

Hydrogen **ports**

ecosystems

Heavy machinery for container handling

Heat and on-shore power

Regulations,

codes and

standards

+ New

Demonstration of short sea and fluvial vessels

HyShip

- H₂ price
- **SOFC** supply chains

for ferry terminals

Ports as deployment sites for projects

Pilots for clean port operations in container and ferry terminals

Heat and on-shore power for ferry terminals

- Port of Palma = 100kW PEM GREEN HYSLAND
- Port of Orkney = 75kW PEM
- Port of Tenerife = 100kW PEM EVERY WHZERE
- Port of Helsinki = 600kW PEM
- Port End Use = 8kW SO on NH3 amon.

Heavy machinery for container handling

Port of Valencia

+ New

Hydrogen valleys in ports

Studies and pilots on:

- Infrastructure for H₂/NH₃ bunkering
- NH₃ and synthetic fuels for maritime
- Retrofit of port vessels fleet
- Passenger ferries

Integrated H2 ecosystem = port of Hirtshals

CONVEY

- H2 production and enduses
- Aquaculture, food industry and logistics (trucks)
- Synergy with REGEAR (CEF)

Overview Hydrogen valleys with ports component

BalticSea H2 (2022, 25M€)

- Studies and pilots on:
 - Infrastructure for H₂/NH₃ bunkering
 - NH₃ and synthetic fuels for maritime
 - Retrofit of port vessels fleet
 - Passenger ferries

BIG-HIT(2015, 5M€)

H2 production and end-uses in port of Orkney (UK)

HEAVENN (2019, 20M€)

- H2 pipeline in Groningen port (NL)
- A H2 fluvial barge

AdvancedH2Valley (2023, 9M€)

- Ro-Ro tractors in port of Nantes (FR)
- Fluvial barge

H2tALENT (2023, 9M€) 📜 🚄

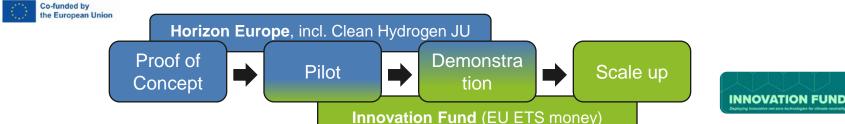
H2 production and storage in the port of Sines (PT)

CONVEY (2023, 9M€) --C NVEY

- H2 production and end-uses in port of Hirtshals (DK)
- Aquaculture, food industry and logistics
- Synergy with REGEAR (CEF)

NAHV (2022, 25M€)

- H2 hubs in marinas (application case in marina of Cres island, HR)
- Ship and ferry


TRIERES (2022, 8M€)

- H2 bunkering system in Port of Piraeus (GR) for a ferry
- Replication in Port of Larnaca (GR)

Synergies at EU level - Projects

Ports - H2020

PI NEERS Antwerp

PIONEERS will work on the implementation of green port innovation demonstrations on clean energy production and supply, the deployment of electric, hydrogen and methanol vehicles, sustainable port design, modal shift and flows optimisation, and digital transformation through AI- and 5Gbased digital platforms.

HAVEN VAN ANTWERPEN-BRUGGE pioneers-ports.eu € 24 999 997 #101037564

 Start date
 End date

 1 October 2021
 30 September 2026

Rotterdam

Green Deal port projects with the following demonstrated elements: On-site BioLNG production; Shore power peak shaving; Port digital twin (GHG tooling and energy matching); Ammonia bunkering; Offshore charging buoy; Autonomous e-barge; Green energy container for inland shipping; Hybrid shunting locomotive; Green connected trucking; Spreading of road traffic.

HAVENBEDRIJF ROTTERDAM NV magpie-ports.eu
€ 24 964 564 #10103659

 Start date
 End date

 1 October 2021
 30 September 2026

Studies and infrastructures in ports

CEF

- PONTIS CORES CICERONE studies
- ENHANCE LH2 and NH3
- GreenH2Atlantic 100MW H2
- H2Sines.Rotterdam 400MW H2

H2bank

- RjukanH2 Norway 19MW
- Gen2-LH2 Norway 82MW
- HammerfestH2 Norway 7,5MW

Cesa "Space4Maritime Decarbonisation

Other programmes: ENOVA, etc.

Study on ports as hydrogen « coastal hubs »

Ports as global hydrogen « coastal hubs »

- Creating / Serving H₂ demand locally for energy intensive industry (steel, chemicals, refineries, etc)
- Integration of renewable electricity
- International trading routes for H₂
- Multimodal transport node

Study on hydrogen in **European** ports and industrial coastal areas Study timeline Project end: Project start: Nov 2021 Nov 2023 Advisory Board Meetings **Ports** Network event Reports Available here: https://www.clean-March 2023 September 2023 November 2023 hydrogen.europa.eu/media/publications/st Case studies, and udy-hydrogen-ports-and-industrialrelease of the final study and associated coastal-areas-reports en

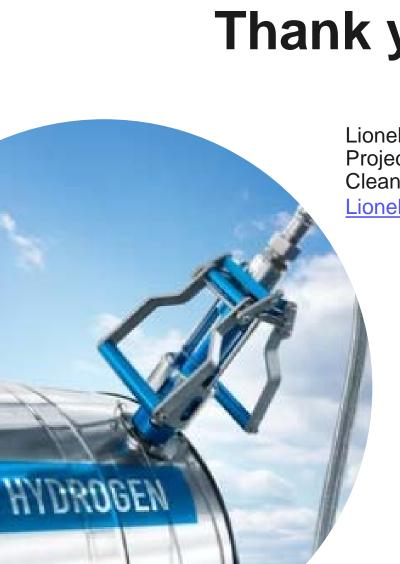
CEM Global Ports Hydrogen Coalition

Report 1: Hydrogen demand & supply, business models

Report 2: R&I, safety and governance gaps

Report 3: case studies with techno-economic feasibility

Thank you


Lionel BOILLOT Project Manager Clean Hydrogen Joint Undertaking Lionel.BOILLOT@clean-hydrogen.europa.eu

> For further information https://www.clean-hydrogen.europa.eu/

