

Next Generation Components for HT PEM and their Relevance in Marine Applications

IEA Technology Collaboration Programme, Advanced Fuel Cells November 2025

Organization

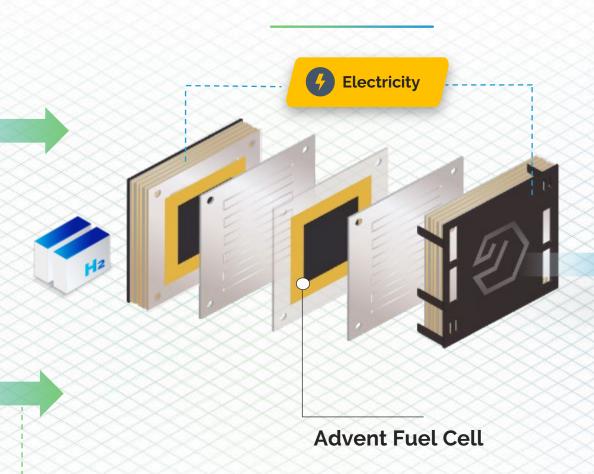
30 Employees 38 Successful R&D Programs 70+
Patents Issued,
Licensed, or Pending

The Next-Gen Fuel Cell

No need for expensive hydrogen infra

Competition

Typical low-temp fuel cell


Requires 99.99% pure hydrogen. Infrastructure for storage, transportation, refill is very expensive

Advent

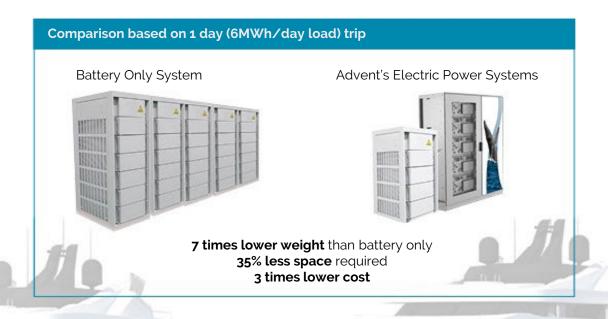
(green) methanol, biofuels, ammonia and other hydrogen carriers

Electric Vehicles

Off-Grid Power Generation

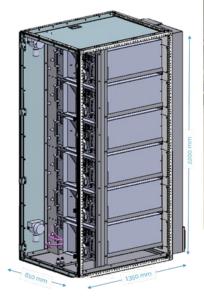
Aviation: Drones, eVTOLs

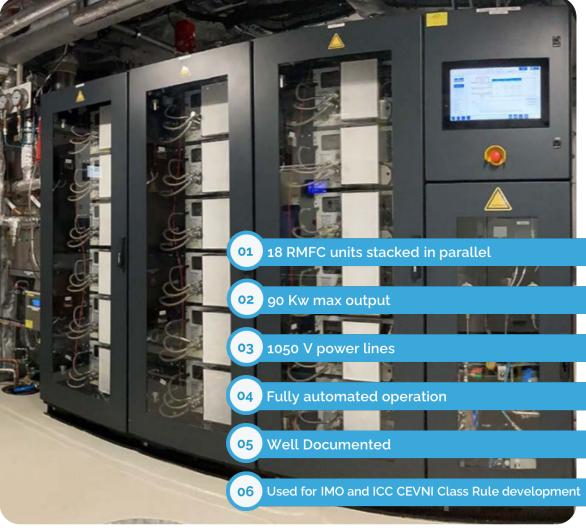
Marine, Aux. Power



Comparison

Battery Only
vs
Advent's Fuel Cell
Electric Power System


Legacy Projects: RiverCell 90 kW Integrated Solution in Neptun Werft Shipyard



90 kW installation RiverCell II 1 x base + 3 x FC Racks

「乙川>ロイ

Methanol= Liquid Green Fuel and Excellent Green Hydrogen Carrier

- **Grey methanol**: Derived from natural gas, undergoing an electrochemical conversion process to produce power (and heat) in fuel cells.
- **Biomethanol**: Sourced from biomass, waste, or biomethane via gasification methods.
- **eMethanol**: Produced through a combination of green hydrogen, generated via water electrolysis using renewable power sources, and CO2.

Maersk Unveils World's Biggest Methanol-Powered Container Ship

Orders for methanol engines outpace LNG for the first time

Shipowners, port operators ramp up methanol-fuelling projects

Methanol as fuel heads for the mainstream in shipping

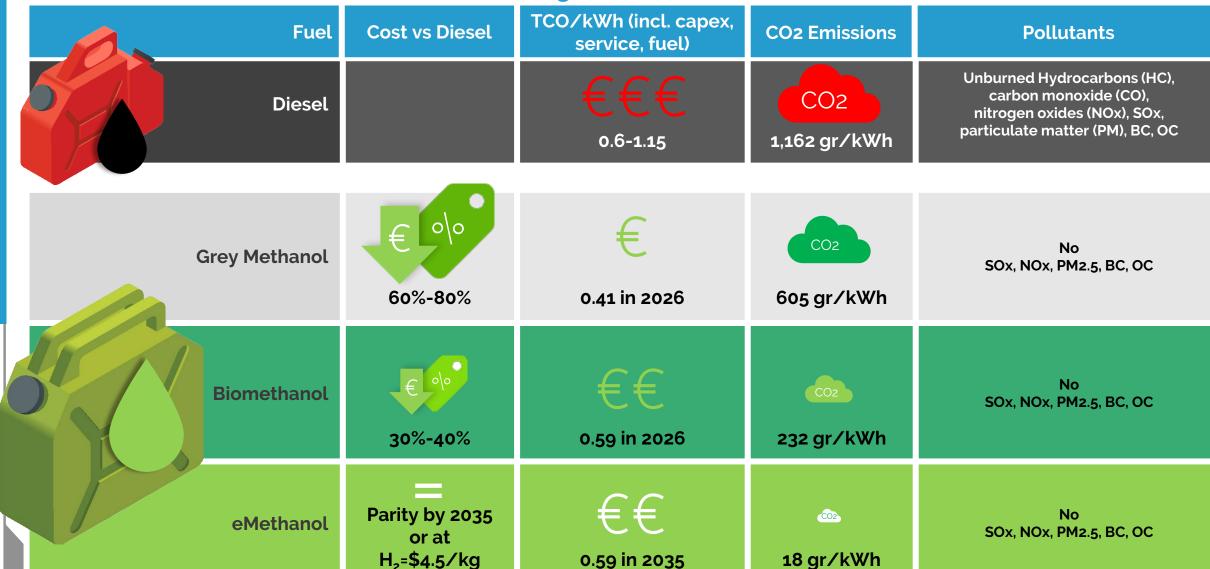
Methanol is the Fuel of Tomorrow, Available Today

130

Green Methanol production projects underway 60% e-methanol, 40% bio-methanol

20m tons

Production Capacity 2028



251

Methanol-fueled vessels are either actively in service or on order.

Types Of Methanol Vs Diesel

Advent Fuel Cells can also use H2 or natural gas, ethanol

COMPARISON

COMPETITION

Low Temperature Proton Exchange Membrane

33% efficiency

ADVENT

High Temperature Proton Exchange Membrane

45% efficiency

LT PEM

Methanol

Methanol

EVAPORATOR

Energy loss approx. 5 %

Using stack waste heat

REFORMER

Expensive reformer and gas

Simple and cost efficient

GAS PURIFIER

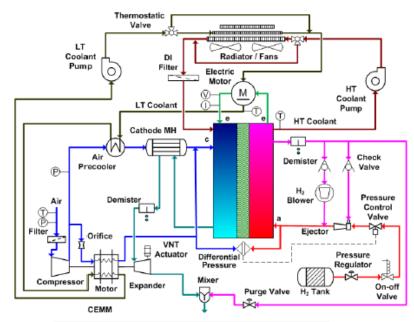
purification

Not necessary

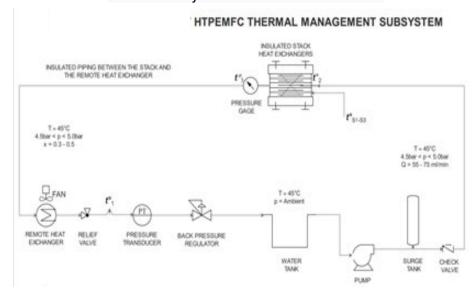
FUEL CELL

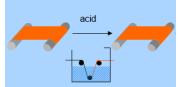
Must have **99,99x% H2**

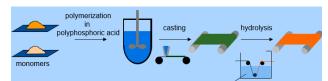
Can function down to 70% H2. Ideal for methanol, up 3 % CO

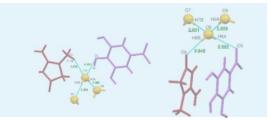

System simplification with HT PEM

External cooling with 2-phase (liquid vapor) flow of water-(or other benign fluid)

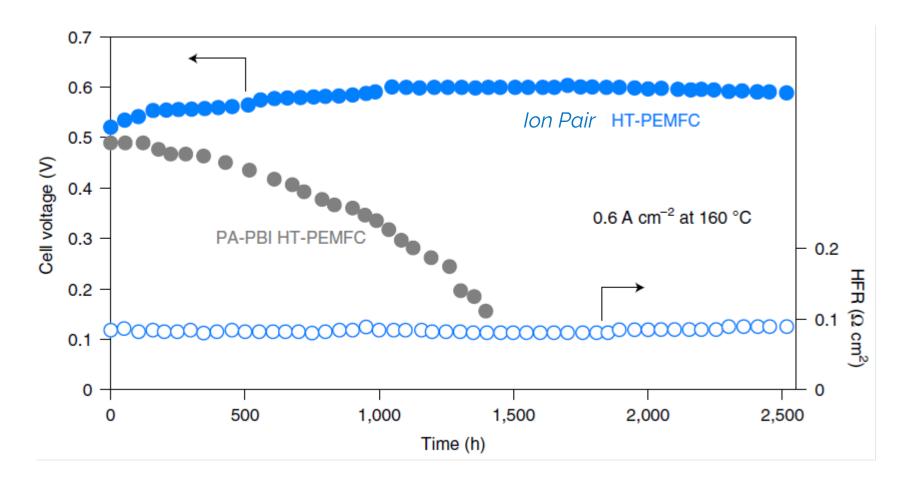

- Eliminates problematic oils typically used as coolant
- Cooling effectiveness of latent heat transfer is much better compared to sensible heat transfer
- 2-phase flow assures exact constant temperature
- Smaller low power pump
- Smaller volume of coolant due to highly effective latent heat transfer
- Small piping circuit components
- Edge, not internal cooling






LT PEM System, from Ahluwalia

Primer on HT PEM

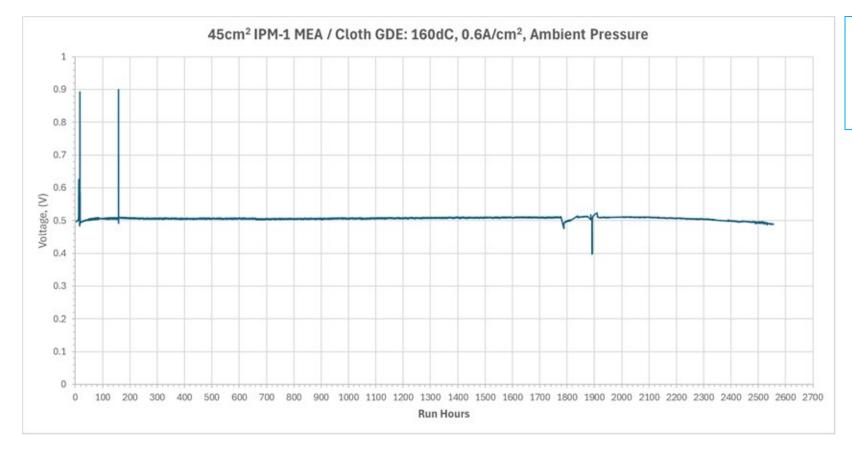

Generation	I 1990s, Case Western, Savinell "PBI"	II ~2004, RPI, Benicewicz & Calundann, "PPA PBI"	III ~ 2018, LANL, Kim et al. "Ion Pair"
How it is made	Dip <i>m</i> -PBI engineering polymer into phosphoric acid	Polymerize <i>p</i> -PBI in the presence of polyphosphoric acid. Hydrolyze.	Dip anion exchange membrane into phosphoric acid . Forms tight ion pair complex
Advantages	First to demonstrate HT PEM, moderate acid loading that is loosely bound to membrane	Very high acid loading. Improved lifetime and performance	Low loading of tightly bound acid. Can make MEAs that have architecture closer to LT PEM. Demonstrated higher power and lifetime than Gen II
Disadvantages	Thick membrane, not capable of higher power. Lower acid meant limited lifetime.	Control of acid leaching Thick electrodes and membrane > 200 °C reverts to gel Still limited life at higher power output	Full potential not realized

DOE HT-PEM MEA is portfolio of technologies (L'Innovator)

DOE technology provides a path for HT PEM to be competitive with LT PEM

Membrane	 Ion-Pair is new paradigm for HT PEM Led by strong computational modelling to predict favourable ion-pairs Backed up by synthesizing the structures and testing: identified optimum More water tolerant vs TPS or PBI 	For example, functionalized DAPP (AEM) from Sandia National Laboratory (M. Hibbs, C.H. Fujimoto, et al.)
Binder /electrolyte	 "Decoupled ionomer" Structure of ionomer (binder) is not same as membrane Can design for higher oxygen flux 	For example, phosphonic acid functionalized poly(pentafluorostyrene) (V. Atanasov, J. Kerres, et al)
Catalyst	 Stabilized Core shell (Brookhaven National Laboratories) High activity Robust to cycling 	Multi-component intermetallic internal core, thin platinum shell

Lifetime, single cell, 5 cm2 (at Los Alamos)



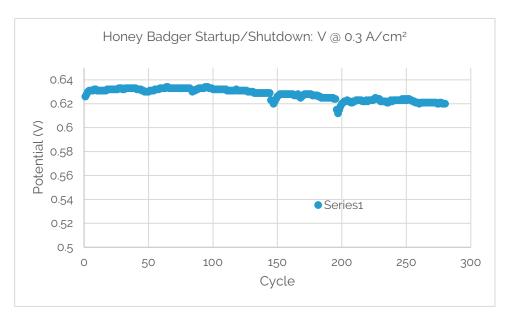
High air flow to accelerate degradation

Published in Nature Energy 2022

Lifetime, single cell, 45 cm², industrialized MEA

Forth uncontrolled shutdown at 2,550 hrs led to failure

- o Ion Pair -4.2 uV/hr after 2500 hrs.
- Under these condition prior generation (PBI) closer to -8 uV/hr with failure > 1,000hrs


65 cell stationary stack with Ion Pair (165 cm² active MEAs) Similar lifetime

Lifetime, on/off single cell

Single Cell at 45 cm² active area

- Standard Materials, ambient pressure, H₂/Air,
- Achieved 0.02mV/cycle drop after 280 cycles vs. 0.5mV/cycle for PBI

- 50 W battery charger
- Integrated methanol reformer
- Can reduce energy weight in the field by 75% vs only batteries (72 hour mission)
- Ion Pair allows 30 % reduction in mass and 27 % reduction in volume vs 2022 soldier unit w PBI

Outstanding resilience to off/on cycling

Forging Strategic Alliances For Joint Business Development

Advent forges **strategic alliances** for customized product development with:

- Shipyards
- Ship design and engineering companies
- Propulsion and power machinery producers
- Propulsion, energy and automation systems designers and integrators
- Fuel infrastructure, Hydrogen, and methanol fuel suppliers
- Classification societies
- National laboratories

